Researchers at Université de Sherbrooke have successfully characterized bacterial cellulose (BC) produced from a novel strain isolated from a kombucha SCOBY. Using the Minitron incubator shaker and an INFORS HT bioreactor, they evaluated the mechanical, thermal, and chemical properties of BC, revealing its potential for applications in biomedical, textile, and cosmetic industries.
Publications
Topic
Product
Researchers at Université de Sherbrooke have successfully characterized bacterial cellulose (BC) produced from a novel strain isolated from a kombucha SCOBY. Using the Minitron incubator shaker and an INFORS HT bioreactor, they evaluated the mechanical, thermal, and chemical properties of BC, revealing its potential for applications in biomedical, textile, and cosmetic industries.
Researchers at the University of Hohenheim, Stuttgart, used the INFORS HT Minifors bioreactor to cultivate a promising new beta-galactosidase enzyme from Paenibacillus wynnii. Known as BgaPw, this enzyme excels in lactose hydrolysis with impressive activity and resistance to product inhibition, paving the way for industrial applications in lactose conversion.
Researchers at the Norwegian University of Life Sciences explored how yeast strains can naturally enhance color in white wine fermentation. Using the INFORS HT Multifors bioreactor and eve software, they examined Starmerella bacillaris strains that influence wine color, polyphenol content, and antioxidant properties. The findings suggest that S. bacillaris offers an eco-friendly alternative to artificial additives in winemaking, highlighting its potential to improve food quality naturally. This study paves the way for sustainable practices and innovative applications in food production and fermentation.
Researchers at Adimab, LLC isolated 188 monoclonal antibodies against Crimean-Congo hemorrhagic fever virus (CCHFV) GP38 from human survivors. While non-neutralizing, these antibodies target 11 overlapping sites and demonstrate protective efficacy in rodent models. This study provides valuable insights into CCHFV viral glycoprotein and could aid the development of antibody therapeutics for this lethal virus.
Researchers at the University of Delaware used the INFORS HT Multitron incubator shaker to evaluate biolayer interferometry (BLI) for fast, high-throughput AAV capsid titer measurement. The study highlights the accuracy of AAVX-BLI across multiple rAAV serotypes, making it a strong alternative to ELISA. Applied in transfection optimization and AAV purification, this method offers valuable insights for improving rAAV production processes.
Researchers at Université Paris-Saclay have developed a mathematical model that accurately predicts pH and metabolite concentrations during the microbial production of 3-hydroxypropionic acid using acetic acid bacteria. Using the INFORS HT Labfors bioreactor, the study focused on the bioconversion of 1,3-propanediol, taking into account the buffering capacity of the biological medium. Their model not only provided precise predictions of microbial growth and acid concentration but also serves as a critical tool for optimizing bioprocesses, particularly in scenarios with free pH dynamics. This work lays the foundation for future advancements in the production and in-situ extraction of organic acids.
Researchers at the Helmholtz Centre for Environmental Research, in Germany, have developed an in vitro model to investigate how environmental chemicals, such as bisphenols (BPX) and PFAS mixtures, affect the interactions between the microbiome and immune system. Using the Multifors bench-top bioreactor, they demonstrated that chronic chemical exposure can alter immune cell activation without affecting microbial community structure.
Researchers at TU Dortmund University have uncovered metabolic bottlenecks in Pseudomonas taiwanensis during growth on d-xylose, using the INFORS HT Multitron Standard incubator shaker. Their findings offer new insights into optimizing the Weimberg pathway for bioprocesses on renewable feedstocks, advancing strain development and bioproduction.
Researchers from the University of São Paulo have developed an innovative two-stage anaerobic digestion process that enhances methane production from sugarcane vinasse. Their approach, which integrates a fermentative-sulfidogenic stage, boosts biogas quality, lowers costs, and eliminates the need for chemical additives. This promising solution could revolutionize bioenergy recovery in sugarcane biorefineries.
Researchers from the University of Wisconsin-Madison utilized an optimized Multifors bench-top bioreactor system to significantly enhance the production of 2-pyrone-4,6-dicarboxylic acid (PDC) from aqueous aromatic streams using Novosphingobium aromaticivorans. Their findings demonstrate how membrane separation and pH control improvements boost PDC yields, advancing the production of biochemicals from lignocellulosic biomass for polymer-based materials.
Researchers at the University of Hohenheim, Stuttgart, used the INFORS HT Minifors bioreactor to cultivate a promising new beta-galactosidase enzyme from Paenibacillus wynnii. Known as BgaPw, this enzyme excels in lactose hydrolysis with impressive activity and resistance to product inhibition, paving the way for industrial applications in lactose conversion.
Researchers at the Norwegian University of Life Sciences explored how yeast strains can naturally enhance color in white wine fermentation. Using the INFORS HT Multifors bioreactor and eve software, they examined Starmerella bacillaris strains that influence wine color, polyphenol content, and antioxidant properties. The findings suggest that S. bacillaris offers an eco-friendly alternative to artificial additives in winemaking, highlighting its potential to improve food quality naturally. This study paves the way for sustainable practices and innovative applications in food production and fermentation.
Researchers at Adimab, LLC isolated 188 monoclonal antibodies against Crimean-Congo hemorrhagic fever virus (CCHFV) GP38 from human survivors. While non-neutralizing, these antibodies target 11 overlapping sites and demonstrate protective efficacy in rodent models. This study provides valuable insights into CCHFV viral glycoprotein and could aid the development of antibody therapeutics for this lethal virus.
Researchers at the University of Delaware used the INFORS HT Multitron incubator shaker to evaluate biolayer interferometry (BLI) for fast, high-throughput AAV capsid titer measurement. The study highlights the accuracy of AAVX-BLI across multiple rAAV serotypes, making it a strong alternative to ELISA. Applied in transfection optimization and AAV purification, this method offers valuable insights for improving rAAV production processes.
Researchers at Université Paris-Saclay have developed a mathematical model that accurately predicts pH and metabolite concentrations during the microbial production of 3-hydroxypropionic acid using acetic acid bacteria. Using the INFORS HT Labfors bioreactor, the study focused on the bioconversion of 1,3-propanediol, taking into account the buffering capacity of the biological medium. Their model not only provided precise predictions of microbial growth and acid concentration but also serves as a critical tool for optimizing bioprocesses, particularly in scenarios with free pH dynamics. This work lays the foundation for future advancements in the production and in-situ extraction of organic acids.
Researchers at the Helmholtz Centre for Environmental Research, in Germany, have developed an in vitro model to investigate how environmental chemicals, such as bisphenols (BPX) and PFAS mixtures, affect the interactions between the microbiome and immune system. Using the Multifors bench-top bioreactor, they demonstrated that chronic chemical exposure can alter immune cell activation without affecting microbial community structure.
Researchers at TU Dortmund University have uncovered metabolic bottlenecks in Pseudomonas taiwanensis during growth on d-xylose, using the INFORS HT Multitron Standard incubator shaker. Their findings offer new insights into optimizing the Weimberg pathway for bioprocesses on renewable feedstocks, advancing strain development and bioproduction.
Researchers from the University of São Paulo have developed an innovative two-stage anaerobic digestion process that enhances methane production from sugarcane vinasse. Their approach, which integrates a fermentative-sulfidogenic stage, boosts biogas quality, lowers costs, and eliminates the need for chemical additives. This promising solution could revolutionize bioenergy recovery in sugarcane biorefineries.
Researchers from the University of Wisconsin-Madison utilized an optimized Multifors bench-top bioreactor system to significantly enhance the production of 2-pyrone-4,6-dicarboxylic acid (PDC) from aqueous aromatic streams using Novosphingobium aromaticivorans. Their findings demonstrate how membrane separation and pH control improvements boost PDC yields, advancing the production of biochemicals from lignocellulosic biomass for polymer-based materials.